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Abstract

This paper uses administrative labour market data from Czechia to investigate

the heterogeneous effects of technology shocks. Using a FAVAR, the shock is identi-

fied using medium run restrictions à la Uhlig (2004b). Workers on low wages reduce

their hours in response to the shock, while the shock has a positive effect on hours

for workers with wages at and above the median. Analysis of industrial and demo-

graphic groups indicates that the latter group is likely to consist of males, to be

educated or to work in services.
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1 Introduction

A large empirical literature has investigated the prediction of real business cycle theory

that technology shocks are important for business cycle fluctuations. Earlier papers in

this literature report results that are at odds with this assertion. For example, in a sem-

inal contribution Gaĺı (1999) identifies the technology shock as the only disturbance in a

VAR that can affect labour productivity in the long-run. He finds that technology shocks

are associated with a decline in hours worked. Similar results are reported in Francis and

Ramey (2005). More recent papers have highlighted the drawbacks of VARs with long-

run restrictions. For example, Uhlig (2004a) proposes a scheme based on medium run

restrictions that are more computationally robust and finds a mild positive response of

hours. Using sign restrictions Dedola and Neri (2007) also report that technology shocks

lead to an increase in hours worked.1

One unifying feature of this literature is the focus on the effect on aggregate hours. In

contrast, evidence on how the distribution of hours changes after the shock is scarce. Our

paper fills this gap in the literature and investigates the possible heterogeneity in the ef-

fects of this shock across workers. In particular, we use administrative data from Czechia

to show that technology shocks are associated with an increase in hours for workers to-

wards the middle and right of the wage distribution. However, hours for low-wage workers

decline after the shock. We find evidence that the positive response of hours reflects the

effect of the shock on male workers and those in service industries. In contrast, the re-

sponse of hours at the left tail of the wage distribution is related to the response of workers

who only have primary education, those in agriculture and construction or female workers.

The paper is related to Saijo (2019) who show using US data that technology shocks lead

to an increase in hours for stock holders and a decline in hours for non-stock holders. The

focus of the current paper is broader as we explore the heterogeneous response of hours

along the wage distribution and for demographic groups defined by gender, industry, age

and education. Moreover, the micro-data in our study has substantially more comprehen-

sive coverage than a survey.2

While our findings are based on the Czech data, their relevance likely extends to other

small, open, and developed economies. This is because Czechia shares characteristics with

these economies, including an industrial focus, consistent GDP growth, global market in-

tegration, and EU membership. In terms of within-country income distribution, income

1For a comprehensive review of the literature see Ramey (2016).
2We also use identification schemes for the technology shock that have superseded the long-run

restrictions employed by Saijo (2019).
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inequality in the Czech Republic has mirrored the broader trend in developed countries.

The Czech National Bank’s inflation-targeting strategy and institutional framework re-

semble those of other central banks.

The paper is organised as follows: Section 2 describes the empirical model and the data.

The main results are presented in section 3. Section 4 concludes.

2 Empirical model and data

In order to estimate the effects of the technology shock on the distribution of hours we

employ a Factor Augmented VAR (FAVAR) (see Bernanke et al. (2005)). The model is

defined by the VAR:

Yt = BXt + ut, (1)

ut ∼ N(0,Σ) (2)

where Yt =

(
Zt

Ft

)
. Zt is a measure of productivity for the Czech Republic, while Ft

denotes a set of common factors extracted from both aggregate and individual-level data.

The vector Xt = [Y ′
t−1, . . . , Y

′
t−P , 1]

′ is (NP + 1) × 1 and defines the regressors in each

equation and B denotes the N × (NP + 1) matrix of coefficients B = [B1, ..., BP , c].

The observation equation of the model is defined as:(
Zt

X̃t

)
=

(
1 0

0 Λ

)(
Zt

Ft

)
+

(
0

vt

)
(3)

X̃t is a M × 1 vector of variables that include quarterly aggregate measures of macroe-

conomic and financial conditions. X̃t also contains measures of hours constructed using

individual-level data. These series include average hours in groups defined by each wage

decile, groups defined by level of education, age, gender and industry. These disaggre-

gated series are available at an annual or bi-annual frequency.

Finally, vt is aM×1 matrix that holds the idiosyncratic components which are assumed to

be autocorrelated and follow an AR(q) process. Note that the idiosyncratic components

corresponding to the hours data can be interpreted as shocks that are specific to those

groups and also capture possible measurement error in the individual-level data. In con-

trast, the shocks to equation 1 represent macroeconomic shocks that are of interest in this

exercise. This ability to estimate the impact of macroeconomic shocks while accounting
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for idiosyncratic disturbances is a key advantage of the FAVAR over a VAR where these

two sources of fluctuations may be conflated (see Giorgi and Gambetti (2017)). Moreover,

by incorporating a large data set, the FAVAR reduces the problem of information defi-

ciency (see e.g. Forni and Gambetti (2014)). In addition, the model allows us to easily

incorporate data on hours that are only available annually before 2012 and twice a year,

thereafter. As described in the appendix, we assume that these observations are averages

of quarterly hours that are treated as additional unobserved states variables.

2.1 Identification of the productivity shock

Uhlig (2004a) shows that an identification scheme based on medium-run restrictions per-

forms better than long-run identification schemes (Gaĺı (1999)) in recovering the pro-

ductivity shock.This long-run scheme has the drawback that the infinite horizon impulse

response has to be estimated and this can be challenging using a short span of data (see

Erceg et al. (2005)). The method of Uhlig (2004a) is less susceptible to this computa-

tional issue as it works with medium horizons. We adopt this strategy as our benchmark

approach.

The structural shocks are defined as εt = A−1
0 ut where A0A

′
0 = Σ. A0 is not unique

and the space spanned by these matrices can be written as Ã0Q where Q is an orthonor-

mal rotation matrix such that Q′Q = I The productivity shock is identified by imposing

the restriction that this shock makes the largest contribution the forecast error variance

(FEV) of Zt at the one year horizon. The appendix provides details of this calculation

and also shows that our main results do not depend on the identifying scheme.

2.2 Data and Estimation

The data set X̃ consists of 84 aggregate series. In addition, we include 23 series on hours

constructed from the labour market data described below. The aggregate series (listed in

the appendix) cover the main sectors of the economy: Real activity, inflation, monetary

and financial series. The series are quarterly from 2002Q1 to 2019Q4. The source of the

data is the FRED database and Global Financial database. All non-stationary series are

transformed by taking log-differences.

Labour market data at the individual level is obtained from the administrative ISPV

dataset, which provides rich contract-level information at annual frequency from 2002 to

2011 and bi-annual frequency thereafter to 2020.3 The data covers a large proportion

3Informačńı systém o pr̊uměrném výdělku (Average Earnings Information System),
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of all Czech labor market contracts. The key variables include wage per-hour, hours

worked and employee characteristics, such as gender, age, and education level. We merge

the data with the RES Business Register database, which provides information on the

business sector in which the employer operates.4

We construct average hours in groups defined by a number of characteristics. First, we

consider 10 groups defined by the deciles of wage that are denoted by P1, . . . , P10. In

addition, we construct groups based on the following characteristics.

1. Education: The averages are calculated from individuals with primary, secondary

or tertiary level education.

2. Age: We consider three age groups: individuals less than 35 years of age, individuals

between the ages of 35 and 50 and individuals older than 50 years.

3. Sector of employment: We include average hours in Agriculture, Manufacturing,

Construction and Services.

4. Gender: We construct average hours for males and females.

In the benchmark model we include these series in logs. However, as discussed below, the

results are robust to using log differences.

The model is estimated using a Gibbs sampling algorithm that is described in details

in the appendix along with the prior distributions and convergence diagnostics. In the

benchmark case, we set the number of factors to 6 based on the ICp2 criterion of Bai and

Ng (2002). The lag lengths in equation 1 is fixed at 4 while the idiosyncratic components

follow an AR(1) process.

3 Results

Before moving on to the distributional response of hours, it is instructive to consider

the response of aggregate variables shown in Figure 1. The productivity shock has an

ambiguous effect on average hours: the median response is negative over the medium

horizon and at odds with real business cycle theory, albeit with large error bands. The

shock is expansionary and increases real activity, stock prices and long-term interest rates,

while pushing down inflation in the medium term. The shock is associated with a real

exchange rate appreciation supporting the findings of Enders et al. (2011) reported for

the US.
4Registr ekonomických subjekt̊u (Business Register). See the on-line appendix for detailed description

of the data
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Figure 1: Response of selected aggregate variables to a productivity shock. Real Cons.
is real consumption, GDP defl. is GDP deflator inflation and REER denotes the real
effective exchange rate. The shaded area displays the 68% error bands.

3.1 Heterogeneous effects of the shock

Figure 2 presents our key result. The figure shows the response of hours in selected wage

deciles on the left and right tail of the wage distribution. The response of hours for

individuals that earn wages below the median resembles the aggregate hours response

shown in Figure 1 with the median showing a decline at short and medium horizons. In

contrast, hours increase towards the right tail of the wage distribution and the response
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Figure 2: Response of hours in wage decile groups. For e.g. P1 denotes the first decile,
while P10 is the last decile. The shaded area displays the 68% error bands

is statistically different from zero about one year after the shock. 5

Figure 3 investigates this heterogeneity further by exploring the response of hours by

demographic groups and sectors. The top panel shows the negative response of hours is

more evident for workers with primary education who are concentrated at the left tail

of the wage distribution (see Figure 1 in the online appendix). The second row of the

Figure shows that there is limited heterogeneity across the age distribution. In contrast,

the response clearly varies across sectors. Hours decline for workers in agriculture and

construction. The response for manufacturing is imprecisely estimated, but is mildly neg-

ative at short and long-horizons, while hours display an increase in the services sector

that is statistically different from zero at the one year horizon. As services dominate the

right tail of the wage distribution while manufacturing and agriculture is more prevalent

towards the middle and left tail (see Figure 4 in the appendix), these impulse responses

are consistent with the distributional results in Figure 2. The final row of the figure shows

that it is male workers that increase hours after the shock. As Figure 1 in the appendix

shows, male workers are substantially more likely to be high wage earners.

Broadly speaking, these results are consistent with skill biased technological change

whereby the shock disproportionally increases the productivity and demand for high

skilled workers. Hours may increase for these workers if they take advantage of higher

returns to skill. The heterogeneity may also be driven by stock holding as in Saijo (2019).

5The online appendix presents the results for all 10 decile groups.
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Figure 3: Response of hours for different demographic groups and sectors. The shaded
area displays the 68% error bands

If high earners hold stock, then they may increase hours worked to benefit from the wealth

effect generated by the technology shock.

3.2 Robustness

We carry out a number of robustness checks that are presented in detail in the on-line

appendix:

1. Identification: We identify the productivity using the sign restrictions methodology

in Dedola and Neri (2007) and Francis et al. (2003). Figure 8 in the appendix shows

that the distributional pattern of the hours response is similar to benchmark. The

results are less precise when long-run restrictions are used to identify the produc-

tivity shock (Figure 9 in the appendix). This unsurprising given the short span of

our data. However, the median responses accord well with our benchmark results.

2. Specification: Figure 10 in the appendix shows that the results are very similar

to benchmark when the number of factors is increased to 8. We also estimate the

model using hours in log-differences. The results in this case are supportive of

8



the benchmark and show an increase in hours towards the right tail of the wage

distribution, in services, for males and those with higher than primary eduction.

4 Conclusions

Using administrative labour market data for Czechia, this paper shows that technology

shocks have a heterogeneous effect on hours worked. Hours increase for high earners and

decline for workers on low wages. The former group appears to consist of more educated

individuals, male workers and those employed in services.
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1 Labour market Data

To analyze the response of the wage distribution to monetary policy shocks, we explore

the universe of granular, contract-level data from the Czech labor market. This data is

accessed via the administrative ISPV1 dataset, which provides rich contract-level infor-

mation at annual frequency from 2002 to 2011 and bi-annual thereafter to 2020. The

data is collected by the Czech Ministry of Labor and Social Affairs as the main source

of information on average earnings and is used for budgetary planning of social security

expenditure.

In each data vintage, the variables include the average wage per-hour and its structure

over the relevant period (including bonuses and other types of compensation), hours

worked (with details on paid and unpaid leave, sick leave, etc.), employee characteristics,

such as gender, age, and education level, and also characteristics of the employer, such as

location and number of employees (full-time-equivalent). To gather more information on

employers, we merge the data with the RES2 Business Register database, which provides

information on the prevailing business sector in which the employer operates.

The data covers a large proportion of Czech labor market contracts, with around 1.5

million cross-sectional units (contracts) in the most recent vintages. While many contracts

appear and disappear during the observed time sample, we can still follow the duration

of each contract, which is a separate data entry. The inclusion of a contract in the sample

depends on the size of the firm. Firms with 250+ employees are included in each vintage,

while smaller firms are covered on a rotational basis to reduce the administrative burden

on small businesses. To correct for any bias this may cause, the under-sampled smaller

firms are assigned a higher weight to represent those which were omitted from the vintage.

The data on hours worked reflects two main sources of variation. The first comes from

the coverage of part-time agreements in the data. Out of 1.2 million contracts covered in

the 2022 vintage of the data, close to 77% are full-time. The rest comprises of contracts

recorded as part-time contracts (close to 23%). However, a significant portion of these

contracts is close to full-time.3 Hours are adjusted for absence (paid and unpaid), overtime

and sickness. The dataset also includes contracts, which start or terminate during the

respective year. The variation coming from this source, however, does not provide much

information about the supply of labor. Therefore, we extrapolate the hours worked under

such contracts as if the contract lasted for the whole year. For example, if there were x

1Informačńı systém o pr̊uměrném výdělku (Average Earnings Information System),
https://www.ispv.cz/en/homepage.aspx

2Registr ekonomických subjekt̊u (Business Register), https://www.czso.cz/csu/res/business register
3About 11% of these contracts have hours above 0.95 of full-time hours.
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hours worked under a contract terminated after a half of a year, we multiply these by 2.

The administrative character of the dataset, together with its wide coverage, overcomes

the usual pitfalls of survey data, such as imperfect coverage of the upper and lower tails of

the wage distribution. However, the data has several limitations. The contract-level and

anonymous nature of the granular data do not allow us to follow an individual through

different employments. For the same reason, we also do not have access to information

about the total income of individuals, who may have a substantial non-wage income or

be employed under several simultaneous contracts. We therefore focus on wage inequality

as a distinct channel of total income inequality. While we do not have information about

employees’ contract history, we can measure their turnover rate by observing the average

length of the present contract.

Figure 1 shows the characteristics of employees and respective contracts along the

wage distribution ( i.e. percentiles of the average hourly wage), averaged over the period

2002–2020. Higher wage percentiles are associated with a higher education level, and

the relationship is strictly increasing. Gender inequality is illustrated by lower shares of

females in higher wage percentiles and by decreasing shares of females toward the higher

end of the wage distribution. Both tails of the wage distribution are associated with a

higher average age, marking the line between workers who were able to climb the seniority

ladder and increase their wages over lifetime and those who struggled to do so, leaving

them with a lower wage toward the end of their working lives. As a result, wage inequality

increases with age. Contract lengths are longer at the right tail of the wage distribution.

The data offers many important insights into the structure of the Czech labor market.

Figure 2 shows the histogram of the log average hourly wage distribution in the last data

vintage used in this paper – 2020. The data on hours worked shows two main sources

of variation. First, part-time agreements: of the 1.2 million contracts in the 2022 data,

about 77% are full-time, while nearly 23% are part-time. A notable portion of part-time

contracts (11%) has hours close to full-time (above 0.95 of full-time hours). Second, actual

hours worked account for absences (paid or unpaid), overtime, and sickness. The dataset

also includes contracts starting or ending within the year, but we extrapolate these as if

the contract lasted the full year to better assess labor supply. Following figures illustrates

several notable trends in the Czech labor market mentioned in the text. Figure 3 shows

that the service sector has the highest female representation, with women making up

more than half of its workforce. Thus, men dominate all other sectors, comprising 65%

of the workforce in the industrial sector. The highest average wage is generally reported

in the construction sector, closely followed by services and manufacturing. However, it is
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Figure 1: Characteristics of employees and contracts along the wage distribution. P10 to
P90 on the X-axis denotes the percentiles of the wage distribution

worth noting that reporting in the construction sector may be influenced by a potentially

significant share of the shadow economy, especially for the less qualified labor force. The

service sector, followed by construction, requires a relatively higher level of education.

Figure 4 illustrates the wage distribution in different sectors. The average hourly wage

is slightly higher in the industrial sector than in the service sector. However, the wage

distribution in industry is more uniform, with most workers earning around the wage

median or slightly above. In contrast, the service sector has a higher share in the lowest

and the highest wage percentiles. Considering the statistics in Figure 3 , this is related

on the one hand to the high share of female workers in the lower wage percentiles, and

on the other hand to the high average level of education in services compared to other

4



Figure 2: Log average hourly wage distribution in 2020

sectors.

In Figure 5 we show that the older the workers are, the longer their working contracts

tend to be. This demonstrates a significant characteristic of the Czech labor market:

workers are opting for stable, long-lasting working relationships. This trend is even more

pronounced in the agriculture sector, particularly in the countryside where there are fewer

job opportunities, and less pronounced in the service sector, which is typically found in

larger urban agglomerations.

2 Empirical model

In order to estimate the effects of the productivity shock we employ a Factor Augmented

VAR (FAVAR) (see Bernanke et al. (2005)). The model is defined by the VAR:

Yt = BXt + ut, (1)

ut ∼ N(0,Σ) (2)
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Figure 3: Characteristics of employees across different business sectors

where Yt =

(
Zt

Ft

)
. Zt is a measure of productivity for the Czech Republic, while Ft

denotes a set of common factors extracted from both aggregate and individual-level data.

The vector Xt = [Y ′
t−1, . . . , Y

′
t−P , 1]

′ is (NP + 1)×1 defines the regressors in each equation

and B denotes the N × (NP + 1) matrix of coefficients B = [B1, ..., BP , c].

The observation equation of the model is defined as:(
Zt

X̃t

)
=

(
1 0

0 Λ

)(
Zt

Ft

)
+

(
0

vt

)
(3)

As we describe in detail below X̃t is a M × 1 vector of variables that include quarterly

aggregate measures of macroeconomic and financial conditions. X̃t also contains measures

of hours and earnings constructed using individual-level data. These series include average

hours and earnings in groups defined by each earnings decile, groups defined by level of
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Figure 4: Characteristics of employees across sectors along the wage distribution. Note
that the bars add up to 10 % across sectors

education, age, gender and industry. These series are available at an annual or bi-annual

frequency.

Finally, vt is aM×1 matrix that holds the idiosyncratic components which are assumed to

be autocorrelated and follow an AR(q) process. Note that the idiosyncratic components

corresponding to the hours and earnings data can be interpreted as shocks that are specific

to those groups and also capture possible measurement error in the individual-level data.

In contrast, the shocks to equation 1 represent macroeconomic shocks that are of interest

in this exercise. This ability to estimate the impact of macroeconomic shocks while

accounting for idiosyncratic disturbances is a key advantage of the FAVAR over a VAR

where these two sources of fluctuations may be conflated (see Giorgi and Gambetti (2017)).
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Figure 5: Contract length in years across different age groups and across sectors along
the wage distribution

2.1 Temporal aggregation and missing data

The data on hours and earnings is only available annually before 2012 and are then

available twice a year. For these series (xt) the observation equation is defined as:

x̂jt = δjFt + v̂jt (4)

where x̂jt denotes unobserved quarterly growth rates of the jth series in xt and δj are the

associated factor loadings. We assume the following relationship between low frequency

and high frequency growth rates:

xQ
jt =

q̃∑
j=0

x̂jt (5)

where q̃ 3 when data is available once a year and 1 when bi-annual observations are

available. In other words, the growth rates at the lower frequency are assumed to be

the sum of the unobserved quarterly growth rates. As explained below, we treat x̂jt as

additional unobserved states and add a step in our MCMC algorithm to draw from their

conditional posterior distribution.

2.2 Identification of the productivity shock

Uhlig (2004a) shows that an identification scheme based on medium-run restrictions per-

forms better than long-run identification schemes (Gaĺı (1999)) in recovering the produc-

tivity shock. We adopt this strategy as our benchmark approach.

The structural shocks are defined as εt = A−1
0 ut where A0A

′
0 = Σ.It is well known that

A0 is not unique but the space spanned by these matrices can be written as Ã0Q where

8



Q is an orthonormal rotation matrix such that Q′Q = I

The productivity shock identified by imposing the restriction that this shock makes

the largest contribution the forecast error variance (FEV) of Zt at the one year horizon.

Consider the transition equation of the model in structural moving average form:

Yt = B (L)A0εt

The k period ahead forecast error of the ith variable is given by:

Yit+k − Ŷit+k = e1

[
k−1∑
j=0

BjÃ0Qεt+k−j

]

where e1 is a selection vector that picks out Zt in the set of variables. Following Uhlig

(2004b), the proposed identification scheme thus amounts to finding the column of Q that

solves the following maximisation problem:

argmax
Q1

e′1

[
K∑
k=0

k−1∑
j=0

BjÃ0Q1Q
′
1Ã

′
0B

′
j

]
e1

such that Q′
1Q1 = 1. Here Q1 is the column of Q that corresponds to the shock that

explains the largest proportion of the FEV of the first variable in the transition equation,

i.e. productivity growth Zt. As shown by Uhlig (2004b), the maximisation can be re-

written as eigenvalue eigenvector problem and a solution can be readily obtained.4

3 Macro Data

The data set X̃ consists of 84 aggregate series. The aggregate series cover the main sectors

of the economy. Real activity series include data on GDP, production, employment,

unemployment,new orders, exports and imports. The inflation data include CPI, PPI

and their components. Monetary series include measures of money supply and credit

growth. We also include financial series covering short and long-term interest rates, stock

4Denoting BjÃ0 by Rj , the objective function is argmaxQ1
e′1

[∑K
k=0

∑k−1
j=0 RjQ1Q

′
1R

′
j

]
e1

st Q′
1Q1 = 1. The objective function can be re-written as argmaxQ1

e′1

[∑K
k=0

∑k−1
j=0 RjQ1Q

′
1R

′
j

]
e1 =∑K

k=0

∑k
j=0 trace

[
Q′

1R
′
j (e1e

′
1)RjQ1

]
= Q′

1

[∑K
k=0

∑k
j=0 R

′
j (e1e

′
1)Rj

]
Q1 = Q′

1SQ1 where S =
[∑K

k=0

∑k
j=0 R

′
j (e1e

′
1)Rj

]
. The Lagrangian

for this maximisation problem is L = Q′
1SQ1−λ (Q′

1Q1 − 1) with first order condition SQ1 = λQ1. Note
that the first order condition is the definition an eigenvalue decomposition.
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prices and exchange rates. The series are quarterly from 2002Q1 to 2019Q4. The source

of the data is the FRED database and Global Financial database (GFD). The series are

transformed via log differences (LD) to induce stationarity. See Table 1 for a list of

variables and sources.

4 Model Estimation

4.1 Empirical model

The observation equation of the FAVAR model is defined as:(
Zt

X̃t

)
=

(
1 0

0 Λ

)(
Zt

Ft

)
+

(
0

vt

)
(6)

where Zt is a measure of productivity growth. X̃t is a M × 1 vector of variables that

include aggregate measures of macroeconomic and financial conditions. X̃t also contains

hours and earnings averaged in groups defined by each earnings decile, groups defined

by education, age, gender and industry . Details of the data used are given below. Ft

denotes a K×1 matrix of unobserved factors while Λ is a M×K matrix of factor loadings.

Finally, vt is a M × 1 matrix that holds the idiosyncratic components. We assume that

each row of vt follows an AR (q) process:

vit =
P∑

p=1

ρipvit−p + eit, (7)

eit ∼ N(0, ri), R = diag ([r1, r2, .., rM ]) (8)

where i = 1, 2, ..,M . Collecting the factors in theN×1 vector Yt =

(
Zt

Ft

)
, the transition

equation can be described as:

Yt = BXt + ut, (9)

ut ∼ N(0,Σ) (10)

where Xt = [Y ′
t−1, . . . , Y

′
t−P , 1]

′ is (NP + 1)× 1 vector of regressors in each equation and

B denotes the N × (NP + 1) matrix of coefficients B = [B1, ..., BP , c]. The covariance

matrix of the reduced form residuals ut is given by Σ. Note that the structural shocks are

10



defined as εt = A−1
0 ut where A0A

′
0 = Σ.

4.2 Temporal aggregation and missing data

The data on hours and wages at the individual level is available at a lower frequency.

These data are observed in the fourth quarter of every year before 2012 and are then

available twice a year. For these series (xt) the observation equation is defined as:

x̂jt = δjFt + v̂jt (11)

where x̂jt denotes unobserved quarterly growth rates of the jth series in xt and δj are the

associated factor loadings. Over years where annual observations are available, we assume

the following relationship between quarterly and monthly data:

xQ
jt =

1

4

3∑
j=0

x̂jt (12)

In other words, the observed hours are an average of the unobserved quarterly hours in

that year.

Over years where bi-annual observations are available, we assume the following relation-

ship :

xQ
jt =

1

2

1∑
j=0

x̂jt (13)

In other words, the bi-annual hours are assumed to be the average of unobserved quarterly

hours in that half-year. we treat x̂jt as additional unobserved states and add a step in

our MCMC algorithm to draw from their conditional posterior distribution.

4.3 Priors

1. Factor loadings Λ. We obtain an initial estimate of the factors Ft using an EM

algorithm
(
F PC
t

)
. Using this estimate we obtain an OLS estimate of the factor

loadings Λols. Denote the factor loading for the ith series in X̃t as Λi. The prior for

Λi is assumed to be N (Λi,0, VΛ) where VΛ is set as a diagonal matrix with diagonal

elements equal to 0.1 and Λi,0 equals Λols for the ith series.

2. Factors Ft. The initial values for the factors are assumed to be normal with mean

F0\0 and variance P0\0. F0\0 is assumed to be the initial value of F PC
t and P0\0 is

set equal to an identity matrix.
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3. Equation for Idiosyncratic errors. We use a normal prior for ρi : N (ρi0, Vρi) . The

prior for ri is inverse Gamma: IG (ri0, T0). We set ρi0 = 0 and Vρi = 1. The scale

parameter and degrees of freedom for the inverse Gamma prior are 0.00001 and 1,

respectively.

4. VAR parameters. We use a natural conjugate prior implemented via dummy obser-

vations (see Banbura et al. (2010)):

YD,1 =



diag(γ1σ1...γNσN )
τ

0N×(P−1)×N

..............

diag (σ1...σN)

..............

01×N


, and XD,1 =


JP⊗diag(σ1...σN )

τ
0NP×1

0N×NP+1

..............

01×NP I1 × c

 (14)

where γ1 to γN denotes the prior mean for the coefficients on the first lag, τ is the

tightness of the prior on the VAR coefficients, c is the tightness of the prior on

the constant terms and N is the number of endogenous variables, i.e. the columns

of Yt. In our application, the prior means are chosen as the OLS estimates of the

coefficients of an AR(1) regression estimated for each endogenous variable. We

use principal component estimates of the factors F PC
t for this purpose. We set

τ = 0.1. The scaling factors σi are set using the standard deviation of the error

terms from these preliminary AR(1) regressions. Finally we set c = 1/10000 in

our implementation indicating a flat prior on the constant. We also introduce a

prior on the sum of the lagged dependent variables by adding the following dummy

observations:

YD,2 =
diag (γ1µ1...γNµN)

λ
, XD,2 =

(
(11×P )⊗diag(γ1µ1...γNµN )

λ
0N×1

)
(15)

where µi denotes the sample means of the endogenous variables calculated using

F PC
t . The prior tightness is set as λ = 10τ .

4.4 Gibbs sampling algorithm

The symbol Θ denotes all other parameters and states. The Gibbs sampling algorithm

samples from the following conditional posterior distributions:

1. G
(
B̃\Θ

)
. B̃ denoted the VAR coefficients in vectorised form: B̃ = vec(B). The
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conditional posterior distribution is normal with mean M and variance V where

M =
(
S−1
0 + Σ−1 ⊗X ′

tXt

)−1
(
S−1
0 B̃0 + Σ−1 ⊗X ′

tXtb̂
)

V =
(
S−1
0 + Σ−1 ⊗X ′

tXt

)−1

The prior for the VAR coefficients based on dummy observations is N
(
B̃0, S0

)
.

2. G (Σ\Θ). The conditional posterior is inverse Wishart:

IW (u′
tut + Σ0, T + TD)

where Σ0 and TD represent the prior scale matrix and degrees of freedom based on

the dummy observations specified above.

3. H (Λ|Θ). Given the factors Ft and a draw of the quarterly observations x̂t, the ob-

servation equation is set of M independent linear regressions with serial correlation

X̃it = FtΛ
′
i + vit

where Λi denotes the ith row of the factor loading matrix. The serial correlaton can

be dealt with via a GLS transformation of the variables:

X̄it = F̄tΛ
′
i + eit

where X̄it = X̃it − ρiX̃it−1 and F̄kt = Fkt − ρiFkt−1. The conditional posterior is

normal N (M,V ) :

V =

(
V −1
Λ +

1

ri
F̄ ′
t F̄t

)−1

M = V

(
V −1
Λ Λi,0 +

1

ri
F̄ ′
tX̄it

)
To account for rotational indeterminancy the top K × K block of Λ is set to an

identity matrix.

4. H (ri|Θ). The conditional posterior for ri is IG (T0 + T, e′iteit + ri0) where T is the

sample size.

5. H (ρ|Θ). Given a draw of the factors, the AR coefficients are drawn for each i
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independently. The conditional posterior is normal N (m, v)

v =

(
V −1
ρi +

1

ri
x′
itxit

)−1

m = V

(
V −1
ρi ρi0 +

1

ri
x′
ityit

)
where yit = vit and xit = vit−1.

6. H (Ft|Θ). To draw the factors, we write the model in state-space form taking

into account the covariance between mt and ut and the serial correlation in the

idiosyncratic components. The observation equation is defined as:

(
Zt

X̄t

)
︸ ︷︷ ︸

xt

=

(
1 0

0 Λ
,
0 0

0 Λ̃1

, · · ·,
0 0

0 0

)
︸ ︷︷ ︸

H



Zt

Ft

·
·
·

Zt−P

Ft−P


︸ ︷︷ ︸

ft

+

(
0

et

)
︸ ︷︷ ︸

Vt

where X̄t =


X̃1t − ρ1X̃1t−1

·
·

X̃Mt − ρMX̃Mt−1

 and recall that X̃t contains data at the monthly

frequency X̃t =

(
X̃M

t

x̂t

)
. The blocks of the H matrix contain the factor loadings

multiplied by the negative of the corresponding serial correlation coefficient. For ex-

ample Λ̃1 =


−Λ1ρ1

·
·

−ΛMρM

 where Λi denotes the factor loadings for the ith variable

Xit. Finally, the variance of Vt is R = diag ([0, r1, .., rM ]). The transition equation

is defined as:

ft = µ+ B̃ft−1 + Ut

where B̃ =

(
B1 · · BP

IN(P−1)×NP

)
, µ =

(
c

0N(P−1)

)
, Ut =

(
ut

0N(P−1)

)
. The
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non-zero block of cov (Ut) is given by Σ. Given this Gaussian linear state-space, the

state vector can be drawn from the normal distribution using the Carter and Kohn

(1994) algorithm.

7. H (x̂t|Θ). Conditional on the remaining parameters, an independent state-space

model applies for each quarterly series with missing observations. The observation

equation is the following when 1 observation is available per-year:

xQ
jt =

(
1/4 1/4 1/4 1/4 0

)


x̂jt

x̂jt−1

x̂jt−2

x̂jt−3

vjt

 if xQ
jt ̸= nan

xQ
jt = ũjt if x

Q
jt = nan

where var (ũjt) = 1e10. The observation equation is the following when 2 observa-

tions is available per-year:

xQ
jt =

(
1/2 1/2 0 0 0

)


x̂jt

x̂jt−1

x̂jt−2

x̂jt−3

vjt

 if xQ
jt ̸= nan

xQ
jt = ũjt if x

Q
jt = nan

where var (ũjt) = 1e10.

With the assumption of one lag in equation 7, the transition equation is:
x̂jt

x̂jt−1

x̂jt−2

x̂jt−3

vjt

 =


FtΛ

′
i

0

0

0

0

+


0 0 0 0 ρi

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 ρi




x̂jt−1

x̂jt−2

x̂jt−3

x̂jt−4

vjt−1

+


ejt

0

0

0

ejt


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where var


ejt

0

0

0

ejt

 =


rj 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 rj

 .

Inefficiency Factors (Average)

0 1 2 3 4 5 6 7 8

VAR Coefficients

Factor loadings

Idio. variance

VAR covariance

Idio. Persistence

Factors

Figure 6: Inefficiency Factors. Average across parameters
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5 Further results and Robustness

Figure 6 shows that the inefficiency factors for the benchmark model are less than 20.

This suggests evidence in favour of convergence of the Gibbs algorithm. Figure 7 presents
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Figure 7: Response of hours in wage decile groups. For e.g. P1 denotes the first decile,
while P10 is the last decile. The shaded area displays the 68% error bands

the response of hours in each wage decile group. The response of hours for individuals

at the left tail resembles the aggregate response. In contrast, hours increase towards the

right tail of the wage distribution and the response is statistically different from zero

about one year after the shock.

We carry out the following robustness checks:

Sign restrictions We identify the productivity using the robust sign restrictions pro-

posed in Dedola and Neri (2007). As discussed in Francis et al. (2003) the precision of

the impulse responses from the sign restrictions scheme can be improved via additional

restrictions–we impose the additional restriction that the identified productivity shock

should explain at least 50% of the forecast error variance of productivity growth at the

10 year horizon. Figure 8 shows that the pattern of the responses for hours is similar to
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Figure 8: Response of hours for different demographic groups and sectors using sign
restrictions. The shaded area displays the 68% error bands

benchmark. Hours increase on the right tail of the wage distribution. They rise for male

workers, those in services and those with tertiary education.
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Figure 9: Response of hours for different demographic groups and sectors using long-run
restrictions. The shaded area displays the 68% error bands

Long-Run restrictions We identify the productivity shock using the long-run identi-

fication scheme of Gaĺı (1999) under which the productivity shock is identified as the only

innovation that can affect the level of productivity in the long-run. Given the short-time

series, estimation of infinite horizon impulse responses is unreliable and this is reflected
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in large error bands. However, the median responses in figure 9 follow the same broad

pattern as the benchmark case.
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Figure 10: Response of hours for different demographic groups and sectors using 8 factors.
The shaded area displays the 68% error bands
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Number of factors Figure 10 shows that the main results are preserved if the number

of factors is increased 8.
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Figure 11: Response of hours for different demographic groups and sectors using hours in
growth rates. The shaded area displays the 68% error bands
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De-trended Hours Figure 11 shows that the main results are preserved if the hours

data log-differenced before estimation. In this case we assume that observed annual/sem-

annual growth rates are a sum of unobserved quarterly growth rates that are treated as

latent. The estimated responses are less precise but show an increase in hours towards

the right tail of the wage distribution, in services, for males and those with higher than

primary eduction.
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Table 1: Aggregate variables included in the FAVAR

Variable Transformation Source

Industrial Production LD FRED

CPI Non-Food LD FRED

Retail Sales LD FRED

Total Credit to Non-Financial Corporations LD FRED

Mining LD FRED

Balance of Payments: Goods LD FRED

CPI Services LD FRED

Imports LD FRED

Unit Labour Costs LD FRED

Vacancies LD FRED

M3 LD FRED

Exports LD FRED

World Uncertainty Index Czechia LD FRED

CPI Energy LD FRED

Unemployment Rate N FRED

Real Consumption LD FRED

CPI Alcohol Tobacco LD FRED

Share Prices LD FRED

Government Consumption LD FRED

PPI Food LD FRED

Real GDP LD FRED

Continued on next page

23



Table 1 – continued from previous page

Variable Transformation Source

US dollar exchange rate LD FRED

CPI LD FRED

3 mth T-Bill rate LD FRED

Real Effective Exchange Rate LD FRED

PPI Manufacturing LD FRED

CPI Food LD FRED

GDP deflator LD FRED

PPI industry LD FRED

Gross Capital formation LD FRED

CPI Restaurants hotels LD FRED

Labour Compensation LD FRED

Earnings Manufacturing LD FRED

CPI housing LD FRED

CPI education LD FRED

Unemployment 25 and over LD FRED

Unemployment 15-24 LD FRED

Unemployment 25 and over females LD FRED

Unemployment 25 and over males LD FRED

Unemployment 15-24 males LD FRED

CPI Communication LD FRED

CPI culture LD FRED

Continued on next page
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Table 1 – continued from previous page

Variable Transformation Source

Retail trade LD FRED

CPI Misc. LD FRED

Unemployment 15-24 females LD FRED

CPI transport LD FRED

10 Year rate N FRED

Net Acquisition Czechia LD FRED

Construction Dwellings LD FRED

Earnings Private Sector LD FRED

Employment Manufacturing LD FRED

Employment Rate total LD FRED

Employment Agriculture LD FRED

Permits for dwellings LD FRED

Employment Rate 15-74 N FRED

Unemployment Rate 15-24 N FRED

Leading indicator LD FRED

Unemployment Rate N FRED

Employment Rate 15-24 N FRED

Employment Services LD FRED

CPI clothing LD FRED

Real Broad Effective ER LD FRED

NEER LD FRED

Continued on next page
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Table 1 – continued from previous page

Variable Transformation Source

Dividend Yield LD GFD

Price Equity LD GFD

5 year yield N GFD

Lending Rate LD GFD

Lending Rate 1 year loans LD GFD

Lending Rate 4+ years LD GFD

Prices last 12 months LD GFD

Unemployment Expectations last 12 mths LD GFD

Consumer expectations LD GFD

Economic situation last 12mths LD GFD

Financial situation last 12mths LD GFD

Prices next 12 mths LD GFD

Financial situation next 12mths LD GFD

Time deposit rate LD GFD

Business Confidence LD GFD

Consumer Confidence LD GFD

Housing starts LD GFD

Housing Permits LD GFD

Stock market capitalization LD GFD

Import Prices LD GFD
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